Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Nutr Food Res ; 68(8): e2300643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600887

RESUMEN

SCOPE: Polyphenols are the major active substances in red jujube fruit, and their anti-inflammatory and antioxidant activities suggest their potential utility in the prevention of ulcerative colitis (UC). METHODS AND RESULTS: In this study, the effect of polyphenol extracts from red jujube (Ziziphus jujuba Mill. "Junzao") (PERJ) on the dextron sulfate sodium (DSS)-induced UC mice is investigated. The result shows that PERJ effectively improves clinical symptoms, including food and water intake, the disease activity insex (DAI) and spleen index, and routine blood levels, and alleviates the shortening of the colon, in mice with DSS-induced UC. Meanwhile, PERJ remarkably decreases the expression of proinflammatory factors. Moreover, PERJ repairs intestinal barrier damage by increasing the expression level of mucin 2 and mucin 3, and the result is also confirmed in the histological assessment. Besides, the expression levels of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and mitogen-activated protein kinase cascade (MAPKs) signaling pathway-related proteins are inhibited by the PERJ administration. Finally, 16S rRNA sequencing analyses reveal that PERJ reverses intestinal microbiota dysbiosis by enhancing the abundance of Firmicutes and decreasing that of Proteobacteria and Bacteroidetes. CONCLUSION: PERJ probably inhibits the development of UC by suppressing the NLRP3 and MAPKs signaling pathways and regulating gut microbiota homeostasis, and can be considered as a potential resource for preventing UC.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Sistema de Señalización de MAP Quinasas , Extractos Vegetales , Ziziphus , Animales , Masculino , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Homeostasis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Ziziphus/química
2.
ACS Omega ; 9(9): 10276-10285, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463329

RESUMEN

l-threonine as an important precursor substance of l-isoleucine and improving its accumulation in Escherichia coli became an important idea to construct a chassis strain with high l-isoleucine production. Meanwhile, the effect of l-threonine metabolic pathway disruption in E. coli for the improved production of l-isoleucine remains unrevealed. In the present study, a mutant strain of E. coli was engineered by inactivating specific metabolic pathways (e.g., Δtdh, ΔltaE, and ΔyiaY) that were associated with l-threonine metabolism but unrelated to l-isoleucine synthesis. This was done with the aim to reduce the breakdown of l-threonine and, thereby, increase the production of l-isoleucine. The results obtained demonstrated a 72.3% increment in l-isoleucine production from 4.34 to 7.48 g·L-1 in the mutant strain compared with the original strain, with an unexpected 10.3% increment in bacterial growth as measured at OD600. Transcriptome analysis was also conducted on both the mutant strain NXU102 and the original strain NXU101 in the present study to gain a comprehensive understanding of their physiological attributes. The findings revealed a notable disparity in 1294 genes between the two strains, with 658 genes exhibiting up-regulation and 636 genes displaying down-regulation. The activity of tricarboxylic acid (TCA) cycle-related genes was found to decrease, but oxidative phosphorylation-related genes were highly up-regulated, which explained the increased activity of the mutant strain. For instance, l-lysine catabolism-related genes were found to be up-regulated, which reconfigured the carbon flow into the TCA cycle. The augmentation of acetic acid degradation pathway-related genes assisted in the reduction in acetic acid accumulation that could retard cell growth. Notably, substantial up-regulation of the majority of genes within the aspartate pathway could potentially account for the increased production of l-isoleucine in the present study. In this paper, a chassis strain with an l-isoleucine yield of 7.48 g·L-1 was successfully constructed by cutting off the threonine metabolic pathway. Meanwhile, transcriptomic analysis revealed that the cutting off of the threonine metabolic pathway induced perturbation of genes related to the pathways associated with the synthesis of l-isoleucine, such as the tricarboxylic acid cycle, glycolysis, and aspartic acid pathway.

3.
Mol Nutr Food Res ; 68(4): e2300334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150643

RESUMEN

SCOPE: Chronic liver diseases are clinically silent and responsible for significant morbidity and mortality worldwide. Jujube has displayed various biological activities. Here, the therapeutic effect of Lactobacillus acidophilus (L. acidophilus)-fermented jujube juice (FJJ) and the possible mechanism against chronic liver injury (CLI) in mice are further studied. METHODS AND RESULTS: After the CCl4 -induced CLI mice are separately treated with L. acidophilus (LA), unfermented jujube juice (UFJJ), and FJJ, FJJ but not LA or UFJJ suppresses the liver index. By using H&E staining, immunofluorescence staining, RT-PCR, and western blotting, it is shown that LA, UFJJ, and FJJ intervention ameliorate hepatocyte necrosis, inhibit the mRNA levels of pro-inflammatory (NLRP3, Caspase-1, IL-1ß, and TNF-α) and fibrosis-associated factors (TGF-ß1, LXRα, and MMP2). Also, FJJ displays significant protection against mucosal barrier damage in CLI mice. Among the three interventions, FJJ exhibits the best therapeutic effect, followed by UFJJ and LA. Furthermore, FJJ improves dysbiosis in CLI mice. CONCLUSIONS: This study suggests that FJJ exhibits a protective effect against CCl4 -induced CLI mice by inhibiting apoptosis and oxidative stress, regulating liver lipid metabolism, and improving gut microecology. Jujube juice fermentation with L. acidophilus can be a food-grade supplement in treating CLI and related liver diseases.


Asunto(s)
Hepatopatías , Ziziphus , Ratones , Animales , Lactobacillus acidophilus/metabolismo , Apoptosis
4.
Biosensors (Basel) ; 13(9)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37754120

RESUMEN

Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.

5.
Mol Biol Rep ; 50(10): 7995-8003, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37540452

RESUMEN

BACKGROUND: Apricot fruit has great economic value. In the process of apricot breeding using traditional breeding methods, we obtained a larger seedling (named Us) from the original variety (named U). And Us fruit is larger than U, taste better. Therefore, revealing its mechanism is very important for Apricot breeding. METHODS: In this study, de novo assembly and transcriptome sequencing (RNA-Seq) was used to screen the differently expressed genes (DEGs) between U and Us at three development stages, including young fruits stage, mid-ripening stage and mature fruit stage. RESULTS: The results showed that there were 6,753 DEGs at different sampling time. "Cellulose synthase (UDP-forming) activity" and "cellulose synthase activity" were the key GO terms enriched in GO, of which CESA and CSL family played a key role. "Photosynthesis-antenna proteins" and "Plant hormone signal transduction" were the candidate pathways and lhca, lhcb, Aux/IAA and SAUR were the main regulators. CONCLUSION: The auxin signaling pathway was active in Us, of which Aux/IAAs and SAUR were the key fruit size regulators. The low level of lhca and lhcb in Us could reveal the low demand for exogenous carbon, but they increased at mature stage, which might be due to the role of aux, who was keeping the fruit growing. Aux and photosynthesis maight be the main causes of appearance formation of Us fruits. Interestingly, the higher expression of CESA and CSL proved that Us entered the hardening process earlier than U. The advanced developmental progress might also be due to the role of Aux.


Asunto(s)
Frutas , Prunus armeniaca , Frutas/metabolismo , Prunus armeniaca/genética , Plantones/genética , Plantones/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Transcriptoma/genética , Ácidos Indolacéticos/metabolismo
6.
ACS Appl Mater Interfaces ; 15(15): 18569-18589, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37037009

RESUMEN

The decreased number of viable bacteria and the ability of Bifidobacterium to adhere to and colonize the gut in the gastrointestinal environment greatly limit their efficacy. To solve this problem, thiolated carboxymethyl cellulose sodium (CMC) probiotic double-layered multinucleated microcapsules with Bifidobacterium adolescentis FS2-3 in the inner layer and Bacillus subtilis SN15-2 embedded in the outer layers were designed. First, the viable counts and release rates of microcapsules were examined by in vitro simulated digestion assays, and it was found that microcapsules were better protected from gastrointestinal digestion than the controls. Compared with free Bifidobacterium strains, double-layered multinucleated microcapsules have higher viable bacterial survival rates and storage stability. Second, through in vitro rheology, tensile tests, isotherm titration calorimetry, and adhesion tests, it was observed that thiolated CMC could enhance the strong interaction of Bifidobacterium with intestinal mucus and significantly promote the proliferation and growth of probiotics. Finally, double-layered multinucleated microcapsules containing B. adolescentis FS2-3 and B. subtilis SN15-2 modified with sulfhydryl-modified CMC were studied in the intestine. Alleviation of Escherichia coli O157:H7 induced intestinal inflammation. The results showed that microencapsulation could significantly increase the colon content of Bifidobacterium, relieve intestinal inflammation symptoms in mice with bacterial enteritis, and repair the intestinal microbiota disorder caused by inflammation. The probiotic double-layered multinucleated microcapsules prepared in this study can improve the survival rate of probiotics and promote proliferation, adhesion, and colonization of probiotics.


Asunto(s)
Escherichia coli O157 , Probióticos , Animales , Ratones , Carboximetilcelulosa de Sodio , Cápsulas/química , Bifidobacterium , Probióticos/uso terapéutico , Sodio
7.
Int J Biol Macromol ; 235: 123829, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36858086

RESUMEN

Heat-moisture treatment (HMT) and annealing (ANN) were applied to modify the proso millet starch, and then the physicochemical properties as well as the in vitro digestion of the modified starch were investigated systematically. Results indicated that HMT and ANN did not change the typical A-type crystallinity. However, both processes cause cracks and dents on the surface of the granule. The gelatinization temperature increased while peak viscosity value, relative crystallinity and gelatinization enthalpy of proso millet starch decreased significantly after HTM and ANN. Meanwhile, a remarkable increase of the slowly digestible starch(SDS) and resistant starch(RS) content was noticed after HTM and ANN modification (the highest content of SDS and RS after HTM and ANN were 9.52 ± 0.82 %, 12.03 ± 1.36 % and 12.15 ± 0.89 %, 8.75 ± 1.63 %, respectively). Those results indicated that the ANN and HMT processes could modify the physicochemical properties and in vitro digestion of proso millet starch efficiently and showed potential application to produce healthy starch food with lower digestion.


Asunto(s)
Panicum , Almidón , Almidón/química , Calor , Temperatura , Harina/análisis
8.
Nat Commun ; 13(1): 6690, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335132

RESUMEN

The Allium genus is cultivated globally as vegetables, condiments, or medicinal plants and is characterized by large genomes and strong pungency. However, the genome evolution and genomic basis underlying their unique flavor formation remain poorly understood. Herein, we report an 11.27-Gb chromosome-scale genome assembly for bunching onion (A. fistulosum). The uneven bursts of long-terminal repeats contribute to diversity in genome constituents, and dispersed duplication events largely account for gene expansion in Allium genomes. The extensive duplication and differentiation of alliinase and lachrymatory factor synthase manifest as important evolutionary events during flavor formation in Allium crops. Furthermore, differential selective preference for flavor-related genes likely lead to the variations in isoalliin content in bunching onions. Moreover, we reveal that China is the origin and domestication center for bunching onions. Our findings provide insights into Allium genome evolution, flavor formation and domestication history and enable future genome-assisted breeding of important traits in these crops.


Asunto(s)
Allium , Allium/genética , Cebollas/genética , Cromosomas de las Plantas/genética , Fitomejoramiento , Evolución Molecular
9.
Molecules ; 27(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36296554

RESUMEN

The emulsification of ultrasonic-assisted prepared octenyl succinic anhydride (OSA) rice starch on curcumin was investigated in the present study. The results indicated that the encapsulation efficiency of curcumin in emulsions stabilized by OSA-ultrasonic treatment rice starch was improved, from 81.65 ± 0.14% to 89.03 ± 0.09%. During the in vitro oral digestion, the particle size and Zeta potential of the curcumin emulsion did not change significantly (p > 0.05). During the in vitro digestive stage of the stomach and small intestine, the particle size of the curcumin emulsion continued to increase, and the absolute potential continued to decrease. Our work showed that OSA-pre-treatment ultrasonic rice starch could improve curcumin bioavailability by increasing the encapsulation efficiency with stronger stability to avoid the attack of enzymes and high intensity ion, providing a way to develop new emulsion-based delivery systems for bioactive lipophilic compounds using OSA starch.


Asunto(s)
Curcumina , Oryza , Emulsiones , Almidón , Anhídridos Succínicos , Ultrasonido
10.
Molecules ; 27(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014425

RESUMEN

Fruits of six varieties of young citrus cultivated in China were collected for phytochemical composition analysis and antioxidant activity determination. The phenolic acids, synephrine, flavone, and flavanone were analyzed using HPLC, and the total phenolic content and antioxidant capacity were determined by Folin-Ciocalteu, Ferric ion reducing antioxidant power (FRAP), 2,2- 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) analysis. The results indicated that Ougan variety had the highest total phenolic content (125.18 GAE mg/g DW), followed by the Huyou variety (107.33 mg/g DW), while Wanshuwenzhoumigan variety had the lowest (35.91 mg/g DW). Ferulic acid was the most dominant soluble phenolic acid in the selected young citrus, followed by p-coumaric acid and p-hydroxybenzoic acid, whereas nobiletin and tangeretin were the most abundant flavones in the Ponkan, Ougan, and Wanshuwenzhoumigan varieties. Antioxidant capacity that measured by ABTS, FRAP, and DPPH showed similar trends and was positively correlated with the total phenolic and total flavonoid contents (p < 0.05). Considering the high content of phenolics in the young fruits of Ougan and Huyou variety, those two varieties might be potential resources for extracting phytochemicals for health promotion.


Asunto(s)
Antioxidantes , Citrus , Antioxidantes/química , Citrus/química , Flavonoides/química , Fenoles/química , Fitoquímicos/análisis
11.
Food Chem X ; 14: 100339, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35634223

RESUMEN

In order to investigate the effect of different cooking methods on the phytochemicals and antioxidant activities of potato from different varieties, three varieties of potatoes were cooked with seven domestic methods. The contents of total phenolic, total carotenoid, vitamin C and phenolic acids of cooked potato were analyzed as well as the antioxidant activities. Results indicated that all the cooking methods showed negative effects on the contents of vitamin C, total phenolic, phenolic acids and DPPH radical-scavenging activity, but the effects were depended on the cooking methods, as frying, air-drying and roasting showed a more intensive decrease of total phenolic, phenolic acids and antioxidant activities than that of steaming or microwaving, regardless of the potato verities. From the perspective of remaining phytochemicals and antioxidant activities, Zhongshubahao might be an ideal potato sample and steaming or microwaving were optional methods for cooking potatoes.

12.
Biotechnol Lett ; 43(6): 1211-1219, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33646457

RESUMEN

Cytidine is an important raw material for nucleic acid health food and genetic engineering research. In recent years, it has shown irreplaceable effects in anti-virus, anti-tumor, and AIDS drugs. Its biosynthetic pathway is complex and highly regulated. In this study, overexpression of uracil permease and a nucleoside transporter from Bacillus amyloliquefaciens related to cell membrane transport in Escherichia coli strain BG-08 was found to increase cytidine production in shake flask cultivation by 1.3-fold (0.91 ± 0.03 g/L) and 1.8-fold (1.26 ± 0.03 g/L) relative to that of the original strain (0.70 ± 0.03 g/L), respectively. Co-overexpression of uracil permease and a nucleoside transporter further increased cytidine yield by 2.7-fold (1.59 ± 0.05 g/L) compared with that of the original strain. These results indicate that the overexpressed uracil permease and nucleoside transporter can promote the accumulation of cytidine, and the two proteins play a synergistic role in the secretion of cytidine in Escherichia coli.


Asunto(s)
Bacillus amyloliquefaciens/metabolismo , Citidina/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Transporte de Nucleósidos/metabolismo , Bacillus amyloliquefaciens/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas/instrumentación , Técnicas de Cultivo Celular por Lotes , Vías Biosintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Nucleósidos/genética , Ingeniería de Proteínas
13.
Molecules ; 25(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266001

RESUMEN

In order to broaden the application of potato pulp pectic polysaccharide (PPP) in stabilizing acidified milk drinks (AMDs) and investigate the stabilizing effect and physical properties of AMDs prepared with PPP, a comparative study was made among PPP, commercial high methoxyl pectin (HMP) and low methoxyl pectin (LMP). The zeta potential, rheology, particle size and serum separation of AMDs were evaluated after preparing with PPP, HMP and LMP, respectively. Results indicated that PPP led to lower serum separation than LMP (14.65% for AMDs prepared with 0.5% PPP compared to 25.05% for AMDs prepared with 0.5% LMP), but still higher than HMP (9.09% for AMDs prepared with 0.5% HMP). However, narrower particle size distribution and lower viscosity of AMDs was achieved by PPP than by LMP and HMP. PPP can electrostatically adsorb on the surface of casein and its abundant neutral sugar side chains would provide steric hindrance to prevent casein flocculation in AMDs. Our results might provide some new ideas for the application of PPP in improving the stability of AMDs.


Asunto(s)
Manipulación de Alimentos/métodos , Proteínas de la Leche/química , Leche/química , Pectinas/química , Polisacáridos/química , Estabilidad Proteica , Solanum tuberosum/química , Animales , Concentración de Iones de Hidrógeno , Reología , Viscosidad
14.
Biotechnol Prog ; 36(6): e3058, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32735374

RESUMEN

Phage infection is common during the production of L-threonine by E. coli, and low L-threonine production and glucose conversion percentage are bottlenecks for the efficient commercial production of L-threonine. In this study, 20 antiphage mutants producing high concentration of L-threonine were obtained by atmospheric and room temperature plasma (ARTP) mutagenesis, and an antiphage E. coli variant was characterized that exhibited the highest production of L-threonine Escherichia coli ([E. coli] TRFC-AP). The elimination of fhuA expression in E. coli TRFC-AP was responsible for phage resistance. The biomass and cell growth of E. coli TRFC-AP showed no significant differences from those of the parent strain (E. coli TRFC), and the production of L-threonine (159.3 g L-1 ) and glucose conversion percentage (51.4%) were increased by 10.9% and 9.1%, respectively, compared with those of E. coli TRFC. During threonine production (culture time of 20 h), E. coli TRFC-AP exhibited higher activities of key enzymes for glucose utilization (hexokinase, glucose phosphate dehydrogenase, phosphofructokinase, phosphoenolpyruvate carboxylase, and PYK) and threonine synthesis (glutamate synthase, aspartokinase, homoserine dehydrogenase, homoserine kinase and threonine synthase) compared to those of E. coli TRFC. The analysis of metabolic flux distribution indicated that the flux of threonine with E. coli TRFC-AP reached 69.8%, an increase of 16.0% compared with that of E. coli TRFC. Overall, higher L-threonine production and glucose conversion percentage were obtained with E. coli TRFC-AP due to increased activities of key enzymes and improved carbon flux for threonine synthesis.


Asunto(s)
Bacteriófagos/patogenicidad , Escherichia coli/genética , Gases em Plasma , Treonina/biosíntesis , Escherichia coli/efectos de la radiación , Escherichia coli/virología , Mutagénesis/efectos de la radiación , Mutación/efectos de la radiación , Temperatura , Treonina/química
15.
Artículo en Inglés | MEDLINE | ID: mdl-32582647

RESUMEN

Prodigiosin (PG) is a typical secondary metabolite mainly produced by Serratia marcescens. CpxR protein is an OmpR family transcriptional regulator in Gram-negative bacteria. Firstly, it was found that insertion mutation of cpxR in S. marcescens JNB 5-1 by a transposon Tn5G increased the production of PG. Results from the electrophoretic mobility shift assay (EMSA) indicated that CpxR could bind to the promoter of the pig gene cluster and repress the transcription levels of genes involved in PG biosynthesis in S. marcescens JNB 5-1. In the ΔcpxR mutant strain, the transcription levels of the pig gene cluster and the genes involved in the pathways of PG precursors, such as proline, pyruvate, serine, methionine, and S-adenosyl methionine, were significantly increased, hence promoting the production of PG. Subsequently, a fusion segment composed of the genes proC, serC, and metH, responsible for proline, serine, and methionine, was inserted into the cpxR gene in S. marcescens JNB 5-1. On fermentation by the resultant engineered S. marcescens, the highest PG titer reached 5.83 g/L and increased by 41.9%, relative to the parental strain. In this study, we revealed the role of CpxR in PG biosynthesis and provided an alternative strategy for the engineering of S. marcescens to enhance PG production.

16.
PLoS One ; 15(5): e0231753, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32369481

RESUMEN

Lou onion (Allium fistulosum L. var. viviparum) is an abundant source of flavonols which provides additional health benefits to diseases. Genome-wide specific length amplified fragment (SLAF) sequencing method is a rapidly developed deep sequencing technologies used for selection and identification of genetic loci or markers. This study aimed to elucidate the genetic diversity of 122 onion accessions in China using the SLAF-seq method. A set of 122 onion accessions including 107 A.fistulosum L. var. viviparum Makino, 3 A.fistulosum L. var. gigantum Makino, 3 A.mongolicum Regel and 9 A.cepa L. accessions (3 whites, 3 reds and 3 yellows) from different regions in China were enrolled. Genomic DNA was isolated from young leaves and prepared for the SLAF-seq, which generated a total of 1,387.55 M reads and 162,321 high quality SNPs (integrity >0.5 and MAF >0.05). These SNPs were used for the construction of neighbor-joining phylogenetic tree, in which 10 A.fistulosum L. var. viviparum Makino accessions from Yinchuan (Ningxia province) and Datong (Qinghai province) had close genetic relationship. The 3 A.cepa L. clusters (red, white and yellow) had close genetic relationship especially with the 97 A.fistulosum L. var. viviparum Makino accessions. Population structure analysis suggested entire population could be clustered into 3 groups, while principal component analysis (PCA) showed there were 4 genetic groups. We confirmed the SLAF-seq approach was effective in genetic diversity analysis in red onion accessions. The key findings would provide a reference to the Lou onion germplasm in China.


Asunto(s)
Cebollas/genética , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/métodos , China , Mapeo Cromosómico , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Hojas de la Planta/genética , Análisis de Componente Principal , Sitios de Carácter Cuantitativo
17.
Molecules ; 25(5)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138212

RESUMEN

Dietary intake of potato starch could induce a dramatic increase in blood glucose and is positively associated with chronic metabolic diseases (type II diabetes, cardiovascular disease, etc.). Grape seed proanthocyanidins (GSP) are known to decrease starch digestion by inhibiting digestive enzymes or changing the physicochemical properties of starch. In the present study, GSP were complexed with potato starch to prepare polyphenol-starch complexes. The physiochemical properties and digestibility of complexes were investigated by in vitro digestion model, X-ray diffraction, differential scanning calorimetry, rapid visco analyzer, Fourier transform infrared spectroscopy as well as texture profile analysis. Results indicated that the peak viscosity, breakdown, trough, and setback of the complexes disappeared, replaced by a special continuous increase in paste viscosity. The complexes showed a lower final viscosity and higher thermal stability with the increasing binding amount of GSP. GSP decreased the hardness of the complexes' gel significantly. FT-IR indicated that GSP might interact with potato starch through noncovalent forces. Additionally, the complexes also showed a higher content of slowly digestible starch and resistant starch than that of the native starch. Thus, we inferred that the addition of GSP could modify the digestibility of potato starch and be an optional way to modify the starch with lower digestion.


Asunto(s)
Extracto de Semillas de Uva/química , Proantocianidinas/química , Solanum tuberosum/química , Almidón/química , Rastreo Diferencial de Calorimetría , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
18.
Food Chem ; 317: 126346, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32070843

RESUMEN

The inhibitory mechanisms of ferulic acid against α-amylase and α-glucosidase were investigated by enzyme kinetic analysis, circular dichroism (CD), Fourier-transform infrared (FT-IR) spectroscopy, fluorescence quenching and molecular docking. Results indicated that ferulic acid strongly inhibited α-amylase (IC50: 0.622 mg ml-1) and α-glucosidase (IC50: 0.866 mg ml-1) by mixed and non-competitive mechanisms, respectively. CD spectra and fluorescence intensity measurements confirmed that the secondary structure of α-amylase and α-glucosidase were changed and the microenvironments of certain amino acid residues were modulated by the binding of ferulic acid. FT-IR spectra indicated that the interaction between ferulic acid and α-amylase/α-glucosidase mainly involved in non-covalent bonds. Molecular docking further demonstrated that the interaction forces between ferulic acid and α-amylase/α-glucosidase were hydrogen bonds, with the binding energy of -5.30 to -5.10 and -5.70 kcal mol-1, respectively. This study might provide a theoretical basis for the designing of novel functional foods with ferulic acid.


Asunto(s)
Ácidos Cumáricos/metabolismo , Inhibidores de Glicósido Hidrolasas/metabolismo , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Sitios de Unión , Ácidos Cumáricos/química , Inhibidores de Glicósido Hidrolasas/química , Enlace de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína , Termodinámica , alfa-Amilasas/química , alfa-Glucosidasas/química
19.
Biotechnol Prog ; 36(2): e2944, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31804750

RESUMEN

In this study, process engineering and process control were applied to increase the production of l-tryptophan using Escherichia coli Dmtr/pta-Y. Different dissolved oxygen (DO) and pH control strategies were applied in l-tryptophan production. DO and pH were maintained at [20% (0-20 hr); 30% (20-40 hr)] and [7.0 (0-20 hr), 6.5 (20-40 hr)], respectively, which increased l-tryptophan production, glucose conversion percentage [g (l-tryptophan)/g (glucose)], and transcription levels of key genes for tryptophan biosynthesis and tryptophan biosynthesis flux, and decreased the accumulation of acetate and transcription levels of genes related to acetate synthesis and acetate synthesis flux. Using E. coli Dmtr/pta-Y with optimized DO [20% (0-20 hr); 30% (20-40 hr)] and pH [7.0 (0-20 hr), 6.5 (20-40 hr)] values, the highest l-tryptophan production (52.57 g/L) and glucose conversion percentage (20.15%) were obtained. The l-tryptophan production was increased by 26.58%, the glucose conversion percentage was increased by 22.64%, and the flux of tryptophan biosynthesis was increased to 21.5% compared with different conditions for DO [50% (0-20 hr), 20% (20-40 hr)] and pH [7.0].


Asunto(s)
Escherichia coli/metabolismo , Fermentación , Triptófano/biosíntesis , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Oxígeno/metabolismo , Triptófano/análisis
20.
Molecules ; 24(19)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569407

RESUMEN

Microorganisms can be used for enhancing flavors or metabolizing functional compounds. The fermented-food-derived bacterial strains comprising Bacillus velezensis, Bacillus licheniformis, and Lactobacillus reuteri mixed with Lactobacillus rhamnosus and Lactobacillus plantarum were used to ferment goji berry (Lycium barbarum L.) juice in this study. The fermentation abilities and antioxidant capacities of different mixtures of multiple strains in goji juice were compared. The results showed that the lactic acid contents increased 9.24-16.69 times from 25.30 ± 0.71 mg/100 mL in goji juice fermented using the SLV (Lactobacillus rhamnosus, Lactobacillus reuteri, and Bacillus velezensis), SZP (Lactobacillus rhamnosus, Lactobacillus plantarum, and Bacillus licheniformis), and SZVP (Lactobacillus rhamnosus, Lactobacillus plantarum, Bacillus velezensis, and Bacillus licheniformis) mixtures, and the protein contents increased 1.31-2.11 times from 39.23 ± 0.67 mg/100 mL. In addition, their contents of volatile compounds increased with positive effects on aroma in the fermented juices. Conversion of the free and bound forms of phenolic acids and flavonoids in juice was influenced by fermentation, and the antioxidant capacity improved significantly. Fermentation enhanced the contents of lactic acid, proteins, volatile compounds, and phenols. The antioxidant capacity was strongly correlated with the phenolic composition.


Asunto(s)
Antioxidantes/química , Antioxidantes/metabolismo , Bacterias/metabolismo , Fermentación , Jugos de Frutas y Vegetales , Lycium/química , Fenoles/química , Relación Estructura-Actividad , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA